Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Ai-Yun Fu, ${ }^{\text {a }}{ }^{*}$ Da-Qi Wang ${ }^{\text {b }}$ and Yong-Ling Sun ${ }^{\text {c }}$

${ }^{\text {a }}$ Institute of Metal-Organic Chemistry, Dezhou University, Shandong Dezhou 253023, People's Republic of China, ${ }^{\text {b }}$ Department of Chemistry, Liaocheng University, Shandong Liaocheng 252059, People's Republic of China, and ${ }^{\text {c }}$ Department of Chemistry, Dezhou University, Shandong Dezhou 253023, People's Republic of China

Correspondence e-mail:
aiyunfu@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=273 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.008 \AA$
R factor $=0.049$
$w R$ factor $=0.144$
Data-to-parameter ratio $=15.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Hexaaquacadmium(II) bis\{4-[2-(4-hydroxyphenyl)-2-propyl]phenolate\} dihydrate

In the title compound, $\left[\mathrm{Cd}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{O}_{2}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, the hexaaquacadmium(II) cation possesses a crystallographically imposed centre of symmetry. In the crystal structure, the $\left[\mathrm{Cd}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ cations, 4-[2-(4-hydroxyphenyl)-2-propyl]phenolate anions and solvent water molecules are connected through a complex pattern of $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Comment

The $\mathrm{Cd}^{\mathrm{II}}$ atom of the title compound, (I) (Fig. 1), coordinated by six water molecules, is situated on an inversion centre. The $\mathrm{Cd}-\mathrm{O}$ bond lengths [2.301 (5)-2.369 (4) Å; Table 1] are normal. The three trans angles of the CdO_{6} octahedron are all 180° by symmetry. The other $\mathrm{O}-\mathrm{Cd}-\mathrm{O}$ angles vary from 86.28 (17) to $93.72(17)^{\circ}$, indicating a slightly distorted octahedral environment.

The 4-[2-(4-hydroxyphenyl)-2-propyl]phenolate anions do not coordinate to the $\mathrm{Cd}^{\mathrm{II}}$ atom but act as counter-anions. The crystal structure is composed of alternating layers of $\left[\mathrm{Cd}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ cations and $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{O}_{2}{ }^{-}$anions, and the uncoordinated water molecules fit into these alternating layers of cations. All the coordinated and uncoordinated water molecules and the O atoms of the anions contribute to intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2), which lead to the formation of two-dimensional networks parallel to the $b c$ plane (Fig. 2).

Experimental

2,2-Bis(4-hydroxyphenyl)propane (2.0 mmol) and $\mathrm{NaOH}(1.0 \mathrm{mmol})$ were dissolved in water $(10 \mathrm{ml})$ and stirred for 10 min to obtain a clear purple solution. To this solution was added an aqueous solution $(10 \mathrm{ml})$ of $\mathrm{Cd}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{mmol})$. After keeping the resulting solution in air for 6 d , large colourless crystals of (I) were formed. The crystals were isolated, washed three times with water and dried in a vacuum desiccator using CaCl_{2} (yield 75%). Elemental analysis, found: C $50.55, \mathrm{H} 6.46 \%$; calculated for $\mathrm{C}_{30} \mathrm{H}_{46} \mathrm{CdO}_{12}$: C 50.67 , H 6.52\%.

Received 5 October 2005 Accepted 14 October 2005 Online 22 October 2005

Crystal data

$\left[\mathrm{Cd}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{O}_{2}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=711.07$
Orthorhombic, Pbca
$a=10.4207$ (18) \AA
$b=10.976$ (2) A
$c=28.962$ (4) \AA
$V=3312.6(9) \AA^{3}$
$Z=4$
$D_{x}=1.426 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection
Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
$T_{\text {min }}=0.734, T_{\text {max }}=0.803$
16112 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.049$
$w R\left(F^{2}\right)=0.144$
$S=1.00$
2944 reflections
196 parameters
H -atom parameters constrained

Mo $K \alpha$ radiation
Cell parameters from 3183
reflections
$\theta=2.8-22.4^{\circ}$
$\mu=0.72 \mathrm{~mm}^{-1}$
$T=273$ (2) K
Block, colourless
$0.46 \times 0.35 \times 0.32 \mathrm{~mm}$

2944 independent reflections
1681 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.052$
$\theta_{\text {max }}=25.2^{\circ}$
$h=-12 \rightarrow 12$
$k=-13 \rightarrow 13$
$l=-24 \rightarrow 34$

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0537 P)^{2} \\
&+10.4291 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.49 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.44 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Cd} 1-\mathrm{O} 3$	$2.301(5)$	$\mathrm{O} 1-\mathrm{C} 5$	$1.364(6)$
$\mathrm{Cd} 1-\mathrm{O} 5$	$2.368(4)$	$\mathrm{O} 2-\mathrm{C} 11$	$1.357(6)$
$\mathrm{Cd} 1-\mathrm{O} 4$	$2.369(4)$		
O3-Cd1-O5	$90.67(16)$	O5-Cd1-O4	
O3-Cd1-O5			
O3-Cd1-O4			

Symmetry code: (i) $-x+1,-y+1,-z+1$.

Table 2
Hydrogen-bond geometry $\left(\AA^{\circ}{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{O} 1^{\text {ii }}$	0.82	1.62	2.434 (5)	170
$\mathrm{O} 4-\mathrm{H} 18 \cdots \mathrm{O} 1^{\text {iii }}$	0.76	2.43	2.893 (6)	121
O5-H20 \cdots O6	0.84	1.85	2.686 (6)	171
$\mathrm{O} 5-\mathrm{H} 21 \cdots \mathrm{O} 1^{\text {iv }}$	0.85	1.97	2.801 (5)	168
$\mathrm{O} 6-\mathrm{H} 22 \cdots \mathrm{O} 2^{\mathrm{v}}$	0.84	1.99	2.822 (6)	171
$\mathrm{O} 6-\mathrm{H} 23 \cdots \mathrm{O} 2^{\text {vi }}$	0.85	1.93	2.778 (6)	178

All H atoms were placed in idealized positions and constrained to ride on their parent atoms $\left[\mathrm{O}-\mathrm{H}=0.765-1.008 \AA\right.$ and $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{O})$; aromatic $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$; methyl $\mathrm{C}-\mathrm{H}=0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$.

Figure 1
A view of (I), showing the atom-numbering scheme and 50% probability displacement ellipsoids. The suffix A corresponds to symmetry code (i) in Table 1.

Figure 2
A perspective view of the crystal packing, along the a axis. Intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are shown as dashed lines.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

References

Bruker (1997). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

