Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ai-Yun Fu,^a* Da-Qi Wang^b and Yong-Ling Sun^c

^aInstitute of Metal–Organic Chemistry, Dezhou University, Shandong Dezhou 253023, People's Republic of China, ^bDepartment of Chemistry, Liaocheng University, Shandong Liaocheng 252059, People's Republic of China, and ^cDepartment of Chemistry, Dezhou University, Shandong Dezhou 253023, People's Republic of China

Correspondence e-mail: aiyunfu@yahoo.com.cn

Key indicators

Single-crystal X-ray study T = 273 K Mean σ (C–C) = 0.008 Å R factor = 0.049 wR factor = 0.144 Data-to-parameter ratio = 15.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. In the title compound, $[Cd(H_2O)_6](C_{15}H_{15}O_2)_2 \cdot 2H_2O$, the hexaaquacadmium(II) cation possesses a crystallographically imposed centre of symmetry. In the crystal structure, the $[Cd(H_2O)_6]^{2+}$ cations, 4-[2-(4-hydroxyphenyl)-2-propyl]-phenolate anions and solvent water molecules are connected through a complex pattern of $O-H \cdots O$ hydrogen bonds.

2-propyl]phenolate} dihydrate

Hexaaquacadmium(II) bis{4-[2-(4-hydroxyphenyl)-

Received 5 October 2005 Accepted 14 October 2005 Online 22 October 2005

Comment

The Cd^{II} atom of the title compound, (I) (Fig. 1), coordinated by six water molecules, is situated on an inversion centre. The Cd–O bond lengths [2.301 (5)–2.369 (4) Å; Table 1] are normal. The three *trans* angles of the CdO₆ octahedron are all 180° by symmetry. The other O–Cd–O angles vary from 86.28 (17) to 93.72 (17)°, indicating a slightly distorted octahedral environment.

The 4-[2-(4-hydroxyphenyl)-2-propyl]phenolate anions do not coordinate to the Cd^{II} atom but act as counter-anions. The crystal structure is composed of alternating layers of $[Cd(H_2O)_6]^{2+}$ cations and $C_{15}H_{15}O_2^{-}$ anions, and the uncoordinated water molecules fit into these alternating layers of cations. All the coordinated and uncoordinated water molecules and the O atoms of the anions contribute to intermolecular $O-H\cdots O$ hydrogen bonds (Table 2), which lead to the formation of two-dimensional networks parallel to the *bc* plane (Fig. 2).

Experimental

2,2-Bis(4-hydroxyphenyl)propane (2.0 mmol) and NaOH (1.0 mmol) were dissolved in water (10 ml) and stirred for 10 min to obtain a clear purple solution. To this solution was added an aqueous solution (10 ml) of Cd(NO₃)₂·6H₂O (1.0 mmol). After keeping the resulting solution in air for 6 d, large colourless crystals of (I) were formed. The crystals were isolated, washed three times with water and dried in a vacuum desiccator using CaCl₂ (yield 75%). Elemental analysis, found: C 50.55, H 6.46%; calculated for C₃₀H₄₆CdO₁₂: C 50.67, H 6.52%.

 $\ensuremath{\mathbb{C}}$ 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

metal-organic papers

Crystal data

 $\begin{bmatrix} Cd(H_2O)_6 \\ (C_{15}H_{15}O_2)_2 \cdot 2H_2O \\ M_r = 711.07 \\ Orthorhombic, Pbca \\ a = 10.4207 (18) \text{ Å} \\ b = 10.976 (2) \text{ Å} \\ c = 28.962 (4) \text{ Å} \\ V = 3312.6 (9) \text{ Å}^3 \\ Z = 4 \\ D_x = 1.426 \text{ Mg m}^{-3} \end{bmatrix}$

Data collection

Bruker SMART CCD area-detector
diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
$T_{\min} = 0.734, T_{\max} = 0.803$
16112 measured reflections

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0537P)^2$
$R[F^2 > 2\sigma(F^2)] = 0.049$	+ 10.4291P]
$wR(F^2) = 0.144$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.00	$(\Delta/\sigma)_{\rm max} < 0.001$
2944 reflections	$\Delta \rho_{\rm max} = 0.49 \ {\rm e} \ {\rm \AA}^{-3}$
196 parameters	$\Delta \rho_{\rm min} = -0.44 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Mo $K\alpha$ radiation

reflections

 $\theta = 2.8-22.4^{\circ}$ $\mu = 0.72 \text{ mm}^{-1}$

T = 273 (2) K

 $R_{\text{int}} = 0.052$ $\theta_{\text{max}} = 25.2^{\circ}$ $h = -12 \rightarrow 12$ $k = -13 \rightarrow 13$ $l = -24 \rightarrow 34$

Block, colourless

 $0.46 \times 0.35 \times 0.32 \ \text{mm}$

2944 independent reflections 1681 reflections with $I > 2\sigma(I)$

Cell parameters from 3183

Table 1

Selected geometric parameters (Å, °).

Cd1-O3	2.301 (5)	O1-C5	1.364 (6
Cd1-O5	2.368 (4)	O2-C11	1.357 (6
Cd1-O4	2.369 (4)		
O3-Cd1-O5	90.67 (16)	O5-Cd1-O4 ⁱ	93.72 (17
$O3-Cd1-O5^{i}$	89.33 (16)	O3-Cd1-O4	89.16 (18
$O3-Cd1-O4^{i}$	90.84 (18)	O5-Cd1-O4	86.28 (17

Symmetry code: (i) -x + 1, -y + 1, -z + 1.

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
O2-H2···O1 ⁱⁱ	0.82	1.62	2.434 (5)	170
O4−H18···O1 ⁱⁱⁱ	0.76	2.43	2.893 (6)	121
$O5-H20\cdots O6$	0.84	1.85	2.686 (6)	171
$O5-H21\cdots O1^{iv}$	0.85	1.97	2.801 (5)	168
$O6-H22\cdots O2^{v}$	0.84	1.99	2.822 (6)	171
$O6-H23\cdots O2^{vi}$	0.85	1.93	2.778 (6)	178

Symmetry codes: (ii) x - 1, y, z; (iii) $-x + 2, y + \frac{1}{2}, -z + \frac{3}{2}$; (iv) $-x + \frac{3}{2}, -y + 1, z - \frac{1}{2}$; (v) $-x + 1, y + \frac{1}{2}, -z + \frac{3}{2}$; (vi) $x, -y + \frac{3}{2}, z - \frac{1}{2}$.

All H atoms were placed in idealized positions and constrained to ride on their parent atoms $[O-H = 0.765-1.008 \text{ Å} \text{ and } U_{iso}(H) = 1.2U_{eq}(O); \text{ aromatic } C-H = 0.93 \text{ Å} \text{ and } U_{iso}(H) = 1.2U_{eq}(C); \text{ methyl} C-H = 0.96 \text{ Å} \text{ and } U_{iso}(H) = 1.5U_{eq}(C).$

Figure 1

A view of (I), showing the atom-numbering scheme and 50% probability displacement ellipsoids. The suffix A corresponds to symmetry code (i) in Table 1.

A perspective view of the crystal packing, along the *a* axis. Intermolecular $O-H\cdots O$ hydrogen bonds are shown as dashed lines.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1997); software used to prepare material for publication: *SHELXTL*.

References

Bruker (1997). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.